
Journal of Computational Physics 204 (2005) 562–586

www.elsevier.com/locate/jcp
Curvilinear parabolic approximation for surface wave
transformation with wave–current interaction

Fengyan Shi *, James T. Kirby

Center for Applied Coastal Research, Center for Applied Coastal Research, University of Delaware, Newark, DE 19716, USA

Received 9 July 2004; received in revised form 15 October 2004; accepted 15 October 2004

Available online 19 November 2004
Abstract

The direct coordinate transformation method, which only transforms independent variables and retains Cartesian

dependent variables, may not be an appropriate method for the purpose of simplifying the curvilinear parabolic

approximation of the vector form of the wave–current equation given by Kirby [Higher-order approximations in the

parabolic equation method for water waves, J. Geophys. Res. 91 (1986) 933–952]. In this paper, the covariant–contra-

variant tensor method is used for the curvilinear parabolic approximation. We use the covariant components of the

wave number vector and contravariant components of the current velocity vector so that the derivation of the curvi-

linear equation closely follows the higher-order approximation in rectangular Cartesian coordinates in Kirby [High-

er-order approximations in the parabolic equation method for water waves, J. Geophys. Res. 91 (1986) 933–952].

The resulting curvilinear equation can be easily implemented using the existing model structure and numerical schemes

adopted in the Cartesian parabolic wave model [J.T. Kirby, R.A. Dalrymple, F. Shi, Combined Refraction/Diffraction

Model REF/DIF 1, Version 2.6. Documentation and User�s Manual, Research Report, Center for Applied Coastal

Research, Department of Civil and Environmental Engineering, University of Delaware, Newark, 2004]. Several exam-

ples of wave simulations in curvilinear coordinate systems, including a case with wave–current interaction, are shown

with comparisons to theoretical solutions or measurement data.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The parabolic equation method for water wave propagation has been known as effective means for pre-

dicting surface water waves over areas of variable bathymetry, including both the effects of refraction and
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Nomenclature

~/ velocity potential
t time

x, y rectangular coordinate system

n, g curvilinear coordinate system

r position vector

U current velocity vector

U, V contravariant components of velocity

vector

u, v Cartesian components of velocity vector
C wave celerity

Cg wave group velocity

r wave intrinsic frequency

k, k wave number and wave number vector,

respectively

ki covariant component of wave number

vector

k01 approximated value for covariant
component k1

kx, ky Cartesian components of wave number
vector

x wave absolute frequency

h wave angle

h water depth

gi, g
i covariant and contravariant base vec-

tor, respectively

vi, vi contravariant and covariant compo-

nents of an arbitrary vector v
gij, gij contravariant and covariant metric,

respectively

J Jacobian value of coordinate

transformation

p CCg

A wave amplitude complex

g gravitation

f wave surface displacement
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diffraction and has been widely used especially for engineering purpose. Recent developments of the par-

abolic model include consideration of wave–current interaction effects, various forms of non-linearity, dis-

sipation, and wave breaking. Some common limitations for model applications have been known as that

the propagation direction of all major components of the wave field must be confined to some narrow band

of directions centered on a prechosen principal propagation direction. A primary progress to relax the lim-

itations has been made using higher-order approximations ([8]), which shows an obvious extension of valid-

ity range of the model equations. An alternative approach to relaxing the model restriction is to use

curvilinear parabolic approximation in which curvilinear coordinate lines are chosen approximately along
the predominant wave propagation directions. Several efforts to develop curvilinear parabolic models have

been made by many authors. The early developments of the curvilinear models concentrated on solving

irregular lateral boundary problems, particularly for idealized situations involving simple boundary config-

urations [11,15]. Tsay et al. [18] reported boundary-fitted curvilinear model in which lowest-order approx-

imations have been made for several geometries. Kirby et al. [12] presented a curvilinear parabolic model

that includes both the low-order approximation and the higher-order approximation and focused on

conformal mapping though generalized curvilinear equations were given in their paper. In all the existing

curvilinear parabolic models, wave–current interaction is not taken into account. Those curvilinear para-
bolic equations were derived from the elliptic equations of either the velocity potential or the free surface

displacement, which are essentially equations of scalar variables. Therefore, the direct coordinate transfor-

mation which based on the differential relation between two coordinates can be simply applied. Although

the equation of wave number vector, k, may be used, for example, in the case of Tsay et al. [18], Cartesian

components, (kx, ky) were usually kept in the equation, which made the final equation complex. For the

more general vector equation which includes wave–current interaction terms such as the wave–current

equation given by Booij [1] or Kirby [8], the direct transformation may not be an appropriate method

for the purpose of simplicity of the model equation.
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In the present paper, we start with the vector form of the wave–current equation given by Kirby [8],

which takes into account the current effect on waves, wave dissipation caused by bottom friction or wave

breaking and non-linear dispersion. Covariant components of the wave number vector (k) and contravar-

iant components of the current velocity vector (U) are adopted for the parabolic approximation in the der-

ivation of the curvilinear equation. The combination of the covariant k and contravariant U enable the
derivation to follow closely the higher-order approximation in Cartesian coordinates in Kirby [8]. We ex-

pect that most terms in the resulting curvilinear equation can be found their counterparts in the Cartesian

equation in Kirby [8] so that the curvilinear equation can be implemented easily following the model struc-

ture and numerical schemes used in the existing computational code REF/DIF-1 [13].

In the following section, the curvilinear parabolic approximation is presented in a generalized curvilinear

coordinate system. Numerical schemes, boundary conditions and wave angle calculation based on curvilin-

ear coordinates are given in Section 3. In Section 4, we show several examples of using the curvilinear par-

abolic model and discuss effects from the extra terms caused by grid stretching and non-orthogonality in the
examples. Wave–current interaction is presented in one of the examples to demonstrate the accuracy and

capability of the curvilinear model in predicting wave transformation in complex environments.
2. Derivation

We start with Kirby�s [8] time-dependent wave–current equation which includes lowest-order amplitude

dispersion for a Stokes wave and dissipation caused by bottom friction or wave breaking. The equation for
the value of the velocity potential ~/ at the mean water level can be written as following, after neglecting the

wave-induced long wave motion:
D2~/
Dt2

þ ðrh �UÞD
~/

Dt
�rh � ðCCgrh

~/Þ þ ðr2 � k2CCgÞr~/þ r2k2DjAj2~/� irw~/ ¼ 0; ð1Þ
where U represents the current velocity vector. The operator D/Dt is given by
D

Dt
� o

ot
þU � rh; ð2Þ
where r and k represent the wave intrinsic frequency and the wave number vector, respectively, and the

dispersion relation can be determined according to
r ¼ x� k �U ¼ ðgk tanh khÞ1=2; ð3Þ

in which x is the absolute frequency. In (1), D is the non-linear dispersion term according to Stokes waves

and can be written as
D ¼ cosh 4khþ 8� 2tanh2kh

8sinh4kh
: ð4Þ
The final term in (1) is a dissipation term which may be used to model frictional dissipation [3,14] or wave

breaking [10].

To ease the derivation of the curvilinear parabolic approximation, we follow Kirby�s [8] derivation made

in rectangular Cartesian coordinates. It is found that the initial parabolic approximations of vector oper-

ations in the wave–current equation are the key points to derive the curvilinear parabolic type equation that

can keep the same form and the same approximation order as Kirby�s [8] final equation.
In Kirby�s [8] derivation, the dispersion relation (3) was approximated by
r ¼ x� jkju; ð5Þ



F. Shi, J.T. Kirby / Journal of Computational Physics 204 (2005) 562–586 565
which is a reasonable approximation considering waves propagate dominantly in the x-direction. In the

construction of the amplitude form of the parabolic equation in Kirby�s [8], a progressive wave was

described in the form
~/ � � ig
2

A
r

� �
e
i
R

�k dx�xt

� �
þ c:c:; ð6Þ
in which wave transformation in the x-direction is dominant. The representative wavenumber �k is obtained

by an average over the transverse y-coordinate
�k ¼ 1

y2 � y1

Z y2

y1

kðx; yÞ dy: ð7Þ
To make curvilinear parabolic approximations of the wave–current equation, a coordinate transformation

should be carried out prior to development of any approximation [11]. With Cartesian components of U

and k retained in the derivation, the direct coordinate transformation method would result in a complicated

form of the final equation because the dispersion relation (3)
r ¼ x� ðkxuþ kyvÞ ð8Þ
cannot be approximated to a simple form as in Kirby [8], and (6) will be extended to
~/ � � ig
2

A
r

� �
e
i
R
ðkxxnþkyynÞ dnþðkxxgþkyygÞ dg�xt

h i
þ c:c: ð9Þ
in curvilinear coordinates. Both (8) and (9) include kx and ky neither of which can be used alone to represent

the dominant component in a wave propagation direction.

In the following, the contravariant–covariant tensor method will be used for curvilinear parabolic
approximations. It will be found that the combination of the covariant wavenumber k and contravariant

velocity U reduce the vector operations to the same forms as in the Cartesian approximations, allowing the

derivation to follow closely the procedure in Kirby [8].

In generalized horizontal 2-D coordinates, an arbitrary vector v can be expressed in a general form based

on covariant base vectors (g1, g2) or the reciprocal contravariant base vectors (g1, g2)
v ¼ vigi ¼ vigi ði ¼ 1; 2; hereafterÞ; ð10Þ
where vi and vi represent contravariant component and covariant component, respectively, and gi and gi
satisfy
gi � gj ¼ dij; ð11Þ
in which dij is the Kronecker delta function.

The relation between covariant and contravariant components can be expressed as
vi ¼ gikvk ð12Þ

and
vi ¼ gikv
k; ð13Þ
where gik and gik represent the covariant metric and contravariant metric, respectively. The Jacobian value

J for coordinate transformation can be written in terms of gij by
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J 2 ¼
g11 g12
g21 g22

����
����: ð14Þ
For a given curvilinear coordinate system expressed by (n(x,y), g(x,y)), the metric tensor and Jacobian are

given by:
g11 ¼ x2n þ y2n;

g12 ¼ g21 ¼ xnxg þ ynyg;

g22 ¼ x2g þ y2g;

ð15Þ

J ¼ xnyg � xgyn ð16Þ
and
g11 ¼ g22=J
2;

g12 ¼ g21 ¼ �g12=J
2;

g22 ¼ g11=J
2:

ð17Þ
To facilitate the derivation in generalized coordinates, we use both the covariant and contravariant com-
ponents in the expressions of vector variables. The contravariant components are used for position vector

r and current velocity vector U as
dr ¼ drigi ¼ dng1 þ dgg2; ð18Þ

U ¼ uigi ¼ Ug1 þ V g2 ð19Þ
and covariant components are used for wave number vector k as
k ¼ kigi ¼ k1g1 þ k2g2: ð20Þ

Using the contravariant components of U and r, the operator D/Dt can be simply written as
D

Dt
¼ o

ot
þ ui

o

ori
¼ o

ot
þ U

o

on
þ V

o

og
: ð21Þ
Following the assumption made in the parabolic equation method in Cartesian coordinates, we assume that

waves are oriented in the +n direction in the general curvilinear coordinates. The dispersion relation may be

written as
r ¼ x� kiui ¼ x� ðk1U þ k2V Þ: ð22Þ

The similar approximation for the dispersion relation can be made following Kirby [8]. Noticing that the

magnitude of k can be expressed by the covariant components (k1, k2) as following:
jkj ¼ k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g11k21 þ 2g12k1k2 þ g22k22

q
; ð23Þ
we now set
k01 ¼ k=
ffiffiffiffiffiffi
g11

p
; ð24Þ
where k01 is a reasonable approximate value for the covariant component k1. The dispersion relation is thus

approximated by
r ¼ x� k01U ; ð25Þ
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consistent with the Cartesian approximation in Kirby [8]. Eq. (24) will be used in the derivation of the

model equation and the superscript ‘‘ 0’’ will be dropped hereafter.

After substituting for the harmonic time dependence, Eq. (1) may then be written as
½ðg11p � U 2Þ~/n�n þ k21ðpg11 � U 2Þ~/þM ~/þ S~/ ¼ 0; ð26Þ
where p = CCg, M ~/ is given by
M ~/ ¼ ½2xk1U þ ix
1

J
½ðJUÞn þ ðJV Þg� � r2k21g

11DjAj2 þ irw�~/� ðUV ~/gÞn � ðUV ~/nÞg
þ ½ðg22p � V 2Þ~/g�g þ 2ixðU ~/n þ V ~/gÞ ð27Þ
and S~/ contains extra terms caused by grid stretching and non-orthogonality and is given by
S~/ ¼ ðg21p~/gÞn þ
J n

J
p g11~/n þ g21~/g

� �
þ ðg12p~/nÞg þ

J g

J
p g12~/n þ g22~/g

� �
: ð28Þ
The above derivation of the elliptic type equation has used (21), (25) and the following divergence formula

in generalized curvilinear coordinates:
divðvÞ ¼ 1

J
oJvi

oxi
: ð29Þ
Compared to the elliptic type equation in Cartesian coordinates, (26) and (27) are very similar to Eqs.

(43) and (44) in Kirby [8] except the covariant component k1 and contravariant components (U, V) are
used in the present equations. In addition, the metric tensor gij show up in some terms where p

appears.

Using a splitting method following Booij [1] (Appendix A), the parabolic equation may be written as
rð
ffiffiffiffiffiffi
g11

p
Cg þ UÞ~/n þ

1

2
rð

ffiffiffiffiffiffi
g11

p
Cg þ UÞ

h i
n

~/� ik1rð
ffiffiffiffiffiffi
g11

p
Cg þ UÞ~/þ i

2
r2k21g

11DjAj2~/þ r
w
2
~/

� xU ~/n þ
1

2
ðxUÞn~/� ikxU ~/

� �
� i

3

4
M 0~/þ 1

4k1
ðM 0~/Þn �

1

4
bðM 0Þ~/� i

2
S~/ ¼ 0; ð30Þ
where M 0~/ is derived from M ~/ by neglecting the non-linear and friction terms and where
b ¼ k1n
k21

þ
½k1ðg11p � U 2Þ�n
2k21ðg11p � U 2Þ

: ð31Þ
To construct the amplitude form of the parabolic equation, we may assume that the wave consists of a

progressive wave which has +n as the preferred propagation direction. ~/ may be written in the form
~/ � � ig
2

A
r

� �
e
i
R

�k1 dn�xt

� �
þ c:c:; ð32Þ
where �k1 is obtained by an average of k1 over the transverse g-coordinate
�k1 ¼
1

g2 � g1

Z g2

g1

k1ðn; gÞ dg: ð33Þ
It should be noted that the definition of �k1 is different from the definition of the reference phase function

based on k0(n) · J0(n) in Kirby et al. [12], which is only valid for conformal coordinate transformations.

After dropping some terms according to the same criteria as in Kirby [8], the final form of the equation

may be written as
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ð
ffiffiffiffiffiffi
g11

p
Cg þ UÞAn þ VAg þ ið �k1 � k1Þð

ffiffiffiffiffiffi
g11

p
Cg þ UÞAþ r

2

ffiffiffiffiffiffi
g11

p
Cg þ U
r

 !
n

þ V
r

� �
g

" #
A

� i

2
ðg22p � V 2Þ A

r

� �
g

" #
g

þ i

2
UV

A
r

� �
g

" #
n

þ UV
A
r

� �
n

" #
g

8<
:

9=
;þ ir

2
k21g

11DjAj2Aþ w
2
A

þ 1

4k1
ðg22p � V 2Þ A

r

� �
g

" #
gn

þ 2i rV
A
r

� �
g

" #
n

8<
:

9=
;

þ b
4

2ixU
A
r

� �
n

þ 2irV
A
r

� �
g

� 2UV
A
r

� �
ng

þ ðg22p � V 2Þ A
r

� �
g

" #
g

8<
:

9=
;

þ i

4k1
ðxV Þg þ 3ðxUÞn
h i A

r

� �
n

þ S0 ¼ 0; ð34Þ
where S 0 represents terms related to grid stretching and non-orthogonality and may be written as
S0 ¼ � i

2
g12 p

A
r

� �
g

" #
n

� i

2
g12 p

A
r

� �
n

" #
g

� i

2

p
J

A
r

� �
n

ðJ ng11 þ J gg12Þ �
i

2

p
J

A
r

� �
g

ðJ ng12 þ J gg22Þ

þ �k1pg12
A
r

� �
g

þ
�k1
2
g12

A
r

� �
pg þ

�k1
2

p
J

A
r

� �
ðJ ng11 þ J gg12Þ: ð35Þ
Eq. (35) contains all the terms induced by grid stretching and non-orthogonality. In fact, our test cases

show that the first three terms in (35) are very small terms and can be neglected in all the cases shown

in Section 4. A scaling analysis for those terms is not given in this study because coordinate transformation

parameters, such as the Jacobian and metric tensors, are case-dependent.
3. Model implementation

3.1. Numerical schemes

Comparing the model equation (34) to the Cartesian equation [8] shown in Appendix B, we can easily

find that, except S 0 term, each term in (34) has its counterpart in the Cartesian equation (B.1). Therefore,

the numerical schemes and other existing implementation techniques used in REF/DIF-1 [13] can be
directly adopted in the present model. The present model implementation includes energy dissipation, sub-

grid technique and high-frequency damping. The non-linearity evaluated by the lowest-order Stokes formu-

lation of Kirby and Dalrymple [7] is also taken into account in the model.

Eq. (34) is discretized using the Crank–Nicolson method, matching forward in n. Iterations for the non-
linear terms are performed using a repeated implicit calculation. The additional term S 0 is also discretized

using theCrank–Nicolson scheme.Themetric tensor and Jacobian values are calculated at computational grid

points and interpolated into subgrid if needed. Grid spacing in the image domain is uniform, i.e.,Dn = Dg = 1.

3.2. Initial and lateral boundary conditions

The initial condition is specified at the furthest seaward grid row. For given wave amplitude a, wave

number k and wave angle h (based on x-direction in Cartesian coordinates), the input initial condition

can be written as
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A ¼ aei
R

k2 dg ¼ aei
R
ðxgk cos hþygk sin hÞ dg

: ð36Þ

The reflective boundary condition is implemented for the lateral boundaries in the present model. The

reflective boundary condition may be written as
r~/ � g2 ¼ 0; ð37Þ
where g2 is the contravariant base vector defined in (10). Applying the covariant components of r~/ in (37)

directly yields the full boundary condition
g12
A
r

� �
n

þ i �k1
A
r

" #
þ g22

A
r

� �
g

¼ 0: ð38Þ
For the case without considering of the Doppler effect on waves, (38) can be simplified to
g12ðAn þ i �k1AÞ þ g22Ag ¼ 0: ð39Þ

The boundary condition may be incorporated in the numerical scheme without difficulty and is thus not

further approximated.

3.3. Wave angle calculation

The convenient way to demonstrate wave direction in generalized curvilinear coordinates is to use a lin-

ear axis, e.g. x-axis in a rectangular Cartesian frame, as an invariant direction reference. In the present

model, zero angle is set to +x-direction, as in the Cartesian model. Because covariant/contravariant tensors

are used in the model equation, the formulation for wave angle calculations is different from that in the

Cartesian model. In the Cartesian model, the wave surface displacement can be written by
f ¼ Aei
R

�k dx ¼ jAjei
R
ðdkxþ�kÞ dxþi

R
ky dy

; ð40Þ

which implies
dkx þ �k ¼ kx ð41Þ

and dkx can evaluated by
dkx ¼ I
o

ox
ðlnAÞ

� �
: ð42Þ
Wave angle can be calculated by
h ¼ arctan
ky

dkx þ �k

� �
: ð43Þ
Similarly, in the curvilinear coordinates, the wave surface displacement can be written by
f ¼ jAjei
R
ðdk1þ �k1Þ dnþi

R
k2 dg

; ð44Þ

where dk1 can be calculated by
dk1 ¼ image
o

on
ðlnAÞ

� �
: ð45Þ
According to the chain rule, (44) may be written as
f ¼ jAjei
R
½ðdk1þ �k1Þnxþk2gx � dxþi

R
½ðdk1þ �k1Þnyþk2gy � dy : ð46Þ
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The wave angle formula can be written as
h ¼ arctan
ðdk1 þ �k1Þny þ k2gy
ðdk1 þ �k1Þnx þ k2gx

� �
; ð47Þ
where nx, ny, gx and gy are calculated by
nx ¼ yg=J ; ny ¼ �xg=J ; gx ¼ �yn=J ; gy ¼ xn=J : ð48Þ
3.4. Curvilinear grid generation and metric tensor calculation

In contrast to model equations derived based on some specific algebraic coordinate transformation, e.g.

Liu and Boissevain [15] or Kirby [11], the present model equation does not explicitly involve any grid gen-

eration methods or equations. However, grids from different grid generation methods may cause some dif-

ferences in the wave model results because the parabolic approximation is made along curvilinear grid lines

and the model equation is discretized in finite difference schemes.

A curvilinear grid can be generated using either algebraic formulas or grid generation softwares. The

generated curvilinear grid lines should approximately follow the directions of wave propagation to keep
the wave calculations in the validity range of the parabolic model equation (70� wave angles with respect

to the direction of coordinate lines as suggested by [9]). To incorporate the grid generation results into the

wave model, x(n,g), y(n,g) obtained from the solution of the grid generation formulas/equations are used to

calculate the curvilinear coordinate-related parameters, i.e., the Jacobian J and metric tensors g11, g22 and

g12 required by the curvilinear model equation (34). A second-order central difference scheme is used to

calculate the Jacobian and metric tensors according to (15)–(17).

In two test cases shown in the next section, we use the grid generation method based on Brackbill and

Saltzman�s [2] equations. This grid generation is carried out by numerically solving a set of Euler equa-
tions optimizing simultaneously grid smoothness, orthogonality, and weighted grid density. Interested

readers can download the grid generation software at http://chinacat.coastal.udel.edu/kirby/programs/

index.html.
4. Model applications

We now carry out several model applications involving curvilinear coordinates. In the first application,
waves propagate in either the radial direction or tangential direction in a circular channel and an orthog-

onal curvilinear grid is used. The test case is used to examine the curvilinear terms caused by grid stretching.

To test the terms resulting from non-orthogonality, we generate a non-orthogonal grid in the second appli-

cation, Isobe�s [6] laboratory experiment, in which waves propagate into a harbor formed by two diverging

breakwaters. In the last application, we simulate [5] experiment in which waves and wave-induced currents

were measured on a curved beach. A generalized curvilinear grid system is employed to follow principle

wave directions and fit breakwater and beach boundaries. The purpose of the simulation is also to test

the model performance in predicting wave–current interaction in a complicated domain.
4.1. Waves in circular channel

In the present model equation, grid stretching can be represented by Jn and Jg in (35). To demonstrate

the effect of grid stretching on wave calculations, we show a case with an orthogonal computational grid

and varying Jacobian values.

http://chinacat.coastal.udel.edu/kirby/programs/index.html
http://chinacat.coastal.udel.edu/kirby/programs/index.html
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The computational domain is a round tank with constant water depth. The first test is that cylindrical

waves are generated at the inner cylinder and then propagate normally to the outer boundary. The curvi-

linear coordinates for this case can be defined by
x ¼ r0 þ
ðr1 � r0Þ

l1
n

� �
cos

2p
l2

g

� �
;

y ¼ r0 þ
ðr1 � r0Þ

l1
n

� �
sin

2p
l2

g

� �
;

ð49Þ
where r0 and r1 are the radii of inner boundary and outer boundary, respectively. n = (0 � l1) and

g = (0 � l2).

Using (15)–(17) results in
J ¼ 2pðr1 � r0Þ
l1l2

r0 þ
r1 � r0

l1
n

� �
; ð50Þ

J n ¼
2pðr1 � r0Þ2

l21l2
; J g ¼ 0; ð51Þ

g11 ¼ l21
ðr1 � r0Þ2

; g12 ¼ 0; g22 ¼ 1

4p2

l22
ðr0 þ r1�r0

l1
nÞ2

: ð52Þ
Thus S 0 can be simplified to
S0 ¼
�k1
2

p
J
J ng11

A
r

� �
: ð53Þ
It can be seen from (50) that the Jacobian increases linearly from the inner boundary to outer boundary in

this case. Because
ffiffiffiffiffiffi
g11

p
is constant in the whole domain, the stretching term in (53) plays a key role in wave

calculations.

Noticing the constant
ffiffiffiffiffiffi
g11

p
and o/og = 0, the model equations (34) and (35) can be simplified to
ffiffiffiffiffiffi

g11
p

CgAn þ
�k1
2

p
J

A
r

� �
J ng11 ¼ 0: ð54Þ
Utilizing �k1 ¼ �k=
ffiffiffiffiffiffi
g11

p
and pk=Cgr ¼ 1 (54) can be further simplified to
An ¼ � 1

2

J n

J
A: ð55Þ
Applying A* · (55) + A · (55)* yields
oJ jAj2

on
¼ 0: ð56Þ
Using the boundary conditions
A ¼ A0; J ¼ J 0 at n ¼ 0 ð57Þ

results in
jAj2 ¼ jA0j2
J 0

J
ð58Þ
or



Fig. 2.
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jAj2 ¼ jA0j2
r0
r
; ð59Þ
which is the wave energy conservation.

As an alternative test on the stretching terms, specifically the Jg-related term, the study on wave prop-

agation along the circular channel is carried out. Dalrymple et al. [4] used spectral methods with coordi-
nate-transformed equations to analytically study linear wave propagation in a circular channel. This

case was also investigated numerically using a parabolic approximation model in conformal coordinate

systems by Kirby et al. [12] who found that the higher-order approximation can improve calculations sig-

nificantly in comparison to the analytical solutions.

Because the parabolic approximation is made in +n-direction in the model derivation, the expression of

the curvilinear coordinates for this case would not be the same as (49). The curvilinear coordinates can be

defined by
Fig. 1. Waves in the circular channel.
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x ¼ r1 �
ðr1 � r0Þ

l1
g

� �
cos

2p
l2

n

� �
;

y ¼ r1 �
ðr1 � r0Þ

l1
g

� �
sin

2p
l2

n

� �
:

ð60Þ
Therefore, the Jacobian and its derivatives and metric tensor for this case are also changed to
J ¼ 2pðr1 � r0Þ
l1l2

r1 �
r1 � r0

l1
g

� �
; ð61Þ

J g ¼ � 2pðr1 � r0Þ2

l21l2
; J n ¼ 0; ð62Þ

g22 ¼ l21
ðr1 � r0Þ2

; g12 ¼ 0; g11 ¼ 1

4p2

l22
ðr1 � r1�r0

l1
gÞ2

: ð63Þ
The stretching term becomes to
S0 ¼ � i

2

p
J
J gg22

A
J

� �
g

: ð64Þ
Eq. (64) implies that the stretching term has an effect on wave diffraction.
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Fig. 3. Non-orthogonal grid for waves between angled boundaries.
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Following the case study in Dalrymple et al. [4] and Kirby et al. [12], the circular channel lies between

two radii r0 = 75 m and r1 = 200 m, and covers a 180� arc. As a particular choice of geometry and wave

conditions, we set that water depth is 4 m and wave period is 4 s. The grid dimension is 201 · 126

(l1 = 125 and l2 = 200). Plane waves with a uniform amplitude across the channel are imposed at the en-

trance. Only linear waves are considered, since the exact solution does not have a non-linear counterpart.
Fig. 1 shows a plot of the instantaneous water surface calculated from the model. The figure illustrates

the wave transformation phenomena described in Dalrymple et al. [4] and Kirby et al. [12] and also shows

the capability of the curvilinear model in predicting wave reflections from the sidewall and diffractions

around the inner wall. In Fig. 2, we show a comparison of the surface elevation variation along the outer

wall. The parabolic model results show very good agreement with the exact solution with accurate phase

and amplitude around the entire 180� sector. The present model results are very similar to the results from

the conformal coordinate model with the large angle approximation Kirby et al. [12] since the same higher-

order approximation is used in the present model equation. Considering that the present grid is not a con-
formal grid, the different treatments for �k1 in the present model and k0(n) and J0(n) in Kirby et al. [12] may

cause some small differences between two model results.

It should be mentioned that the rectangular Cartesian version of the parabolic wave model (e.g. [8])

would not be an appropriate model for this case since the tank circumferences can not be treated as the

lateral boundaries of the Cartesian model. Waves are reflected from the boundaries around the channel

and the wave angles with respect to the prechosen x-direction are too large. On the contrary, with the cir-

cular walls as its lateral boundaries, the curvilinear model can take into account the wave reflections and
Fig. 4. Basin configuration for Isobe�s experiments [6].
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wave angles with respect to the circumferential coordinates would be in the validity range of the model

equation according to the model evaluation based on the large angle approximation [9]. Therefore, the pre-

sent model can make a good prediction of wave propagations in the circular channel.

4.2. Waves between diverging breakwaters

Wave propagation between two diverging breakwaters has been studied by several authors. Isobe [6] car-

ried out a laboratory experiment to study waves propagating into a harbor formed by two diverging break-

waters. He then used a ray-front coordinate scheme [17] to numerically simulate the case. Liu and

Boissevain [15] developed a non-orthogonal, rectilinear coordinate scheme for this case by applying a spe-

cific coordinate transformation to the a parabolic type equation and boundary conditions. Kirby [11]

pointed out that a transformation of full governing equation prior to development of any approximation
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Fig. 5. Comparison of calculated and measured wave height distributions along transect A.
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576 F. Shi, J.T. Kirby / Journal of Computational Physics 204 (2005) 562–586
leads to a model whose results stand in closer agreement to laboratory data for this case. The importance of

non-linear effects on wave calculations in the specific case was mentioned in Kirby [11].

The non-orthogonal coordinate transformation used by Liu and Boissevain [15] or Kirby [11] is a good

example to test non-orthogonal terms for the present model. The grid system is shown in Fig. 3 and the

coordinate transformation may be written as
n ¼ x;

g ¼ ybðy�x tan h1Þ
ðtan h2�tan h1Þxþyb

:

(
ð65Þ
Angles h1 and h2 are both defined to be positive in the right-handed sense in (x,y). The grid non-orthogo-
nality is indicated by the value of g12 which can be calculated from (15) and (17) as
g12 ¼ �yb tan h1 � gðtan h2 � tan h1Þ
ðtan h2 � tan h1Þnþ yb

: ð66Þ
It can be seen that g12 varies in both n and g directions.

The configuration for Isobe�s [6] experiment is shown in Fig. 4. Isobe gave the incident wave conditions

in the deep portion of the basin as incident direction hI = 18�, wave height HI = 9.1 cm, and wave period

T = 0.83 s. These values were transformed to the harbor entrance using Snell�s law, and then the present
ξ

η

Fig. 7. Grid generated using Brackbill and Saltzman�s [2] equations.
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model is applied in order to compute wave heights at transect A � A 0 and B � B 0 indicated in Fig. 4. In the

computations, n = 51 and g = 51. The non-linear term is included in the calculation.

In Fig. 5 and 6, the model results (solid lines) are compared to the measured data on transect A � A 0 and

B � B 0, respectively. Results on transect A � A 0 indicate that the present model basically captures the two

wave height peaks caused by the wave diffraction as shown in the measurements. The results on transect
B � B 0 also show a good agreement to measurements. The results look very similar to Kirby�s [11] results
in his simulation with consideration of the non-linear effect. Although we expected some improvements on

calculations of wave diffractions in this case since the high-order approximation is used in the present

model, no significant enhancement of the model results is found. In addition, the full boundary condition

was found to be critical in obtaining accurate results of this case.

To make a test on the model dependency on grid generation, we generate an alternative curvilinear grid

using Brackbill and Saltzman�s [2] grid generation method as shown in Fig. 7. The generated grid tends to

be orthogonal compared to the analytical grid shown in Fig. 3. The wave modeling results based on the new
grid are also shown in Fig. 5 and 6 in dashed lines. The new results are close to the previous results on both

transect A � A 0 and transect B � B 0 though some discrepancies can be identified. The discrepancies are sus-

pected to be caused by the non-orthogonality terms and lateral boundary conditions considering of the

more orthogonal grid from Brackbill and Saltzman�s equations.
Fig. 8. Layout of Gourlay�s experiment.
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4.3. Waves passing breakwater and curved beach

Compared to the previous curvilinear parabolic approximation model, one versatility of the present

model is incorporation of the current effect into the wave calculations. To illustrate the performance of

the present model in predicting wave–current interaction, we now simulate Gourlay�s [5] wave–current
experiment in which waves pass a breakwater and break on a curved beach. The breaking waves generate

longshore currents and affect wave propagations.

Fig. 8 shows the laboratory setup for Gourlay�s experiment. A 1 on 10 concrete beach is parallel to the

incoming wave crests in the exposed zone. In the shadow zone, the slope is also 1/10 towards the curved

beach which has a constant radius centered on the breakwater tip. The wave basin was thus designed so

that the shoreline was everywhere approximately parallel with the diffracted wave crests.

A curvilinear grid shown in Fig. 9 is generated using Brackbill and Saltzman�s [2] grid generation equa-

tions. It can be seen that the grid approximately follow the principle wave directions and fit the curved
shoreline boundary. The grid dimension n · g = 121 · 193. It can be seen from the figure that, at the tip

of the breakwater, the curvilinear lines bend 90� in order to fit the breakwater boundary. The grid is smoo-

then around the tip to avoid a big grid distortion which may cause the discontinuity of the metric tensor.

A wave height of 9.1 cm with a wave period of 1.54 s is used in the present simulation as the incident

wave condition, as in the laboratory experiment. We first run the model without the current effect. The

wave surface calculated from the model is demonstrated in Fig. 10. The waves initially propagate in a
ξ

η

Fig. 9. Computational grid for simulation of Gourlay�s experiment.



F. Shi, J.T. Kirby / Journal of Computational Physics 204 (2005) 562–586 579
straight line along the channel, as reaching the tip of the breakwater, the waves start to diffract around the

tip and run onto the curved beach. The diffracted wave crests are clear shown in the figure. Fig. 11 shows

the wave height distribution calculated from the present model. The wave height contours show the wave

diffractions in a radiate manner which is similar to the diffraction pattern in a typical case of normal wave

incidence on a semi-infinite breakwater. The wave height contours also illustrate the wave height decay on
the beach caused by wave breaking. To compare the results to the laboratory measurements, we plot the

measured wave height contours according to Gourlay�s measurements as shown in Fig. 12. The overall

agreement of calculated wave height to the measurements is good. In particular, the calculated wave heights

in the shadow region are between 2 and 4 cm, that match the measurement data. On the right-hand side of

the breakwater tip, 10 cm contour in the numerical results is presented in the higher position compared to

the measurements. In addition, the model without wave–current interaction does not predict the 10 cm

contour as shown near the right side wall in Fig. 12.

We now consider the current effect on the wave propagation for the case. A model coupling is carried out
between the present wave model and the curvilinear nearshore circulation model developed by Shi et al.

[16]. The wave model provides the circulation model with radiation stresses, short-wave-induced volume

flux and breaking wave energy dissipation. As a feedback, the current field calculated from the circulation

model is inputed into the wave model and thus the wave–current interaction is taken into account. The cur-

rents calculated from the circulation model is illustrated by both the contours for the magnitude of the

velocity and some streamlines indicating the direction of the flow in Fig. 13. The calculated current field

agrees well with the measurements which is not presented here. Interested readers may refer to Gourlay

[5] or Shi et al. [16] for details.
Fig. 10. Wave surface calculated by the present model without wave–current interaction.
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With wave–current interaction, wave crests in both the explored region and the sheltered region are

distorted by the currents as shown in Fig. 14. Fig. 15 shows the wave height distribution in the case of

wave–current interaction. Compared to the previous results without wave–current interaction, the pre-

sent results agree more closely to the measurements. Basically, the wave heights at the location where

the curved beach starts tend to decrease because the current approximately flows in the wave direction.
The wave heights near the right boundary tend to increase because the rip current flows against the

waves. The 10 cm contour is predicted in the rip current region, that is consistent with the

measurements.
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The enhancement of the present model in predicting wave diffraction in the sheltered region can be

presented by the comparison between the curvilinear model and the Cartesian model in Gourlay�s case.

To show the comparison, the Cartesian wave model REF/DIF-1 is employed in the model coupling
Fig. 14. Wave surface calculated by the present model with wave–current interaction.
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instead of the present curvilinear model. In REF/DIF-1, the wet and dry grid technique proposed by

Kirby and Dalrymple [10] is used for treating the dry grid points as though they have a very small

depth of water (1 mm in the present paper). The results of wave heights calculated from the Cartesian

model is shown in Fig. 16. It can be found in the comparison between Figs. 15 and 16 that the Car-

tesian model obviously underpredicts wave heights in the sheltered region even though the large angle
approximation is used in REF/DIF-1.
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Fig. 16. Wave height calculated by the Cartesian model with wave–current interaction.
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5. Conclusions

Covariant/contravariant tensor method is used in the curvilinear parabolic approximation for the vector

form of the wave–current equation given by Kirby [8]. The derived model equation can be easily imple-

mented following the model structure and numerical schemes used in the existing code of the Cartesian par-
abolic model. Besides the curvilinear parabolic approximation, the present model possesses all the features

existing in Kirby [8] such as higher-order approximation, wave–current interaction, and treatments of wave

breaking and wave non-linearity. The model is then applied to several cases involving curvilinear coordi-

nates in order to examine the curvilinear terms and show model performances. In the first case, the grid

stretching terms are verified using analytical solutions of wave propagations in a circular channel. The sec-

ond case is the calculation of waves propagating into a harbor formed by two diverging breakwaters using

non-orthogonal coordinates. The numerical results are compared to Isobe�s [6] laboratory measurements

and good agreements are obtained. In the last case, the model is used to simulate Gourlay�s experiment
in order to present the model performance in calculations of wave–current interaction in the complicated

domain with a breakwater and a curved beach. Model/data comparisons show that the results with consid-

eration of wave–current interaction agree better than the results without wave–current interaction. Com-

pared to the results from the Cartesian model, the curvilinear model with grid lines tracing principle

wave directions can predict better wave diffractions in the sheltered region.

Although the present approach can further improve the calculations of large angle wave propagations,

the wave angle limitation caused by the parabolic approximation still exists in model applications. First, the

model accuracy depends on a prechosen principal wave direction. In complicated coastal regions, waves
propagate in a wide range of directions. Sometimes it is hard to generate a grid that follows multiple prin-

cipal wave directions. Second, grid distortion may cause a model inaccuracy as mentioned in Section 4.3. In

calculations of wave diffractions around coastal structures such as breakwaters, the overbend of grid lines

may result in discontinuities of metric tensors which cause numerical errors or instabilities. Such kind of

grid needs to be smoothen before using.
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Appendix A. Booij�s splitting method

Using a splitting method, an elliptic equation for ~/ can be split into parabolic equations for a forward

scattered wave ~/
þ
and a backward scattered wave ~/

�
, where
~/ ¼ ~/
þ þ ~/

�
: ðA:1Þ
Booij [1] showed that an associated equation
ðc�1/m;nÞn þ c/m ¼ 0 ðA:2Þ
is split identically into
ð/þ
mÞn ¼ ic/þ

m ; ðA:3Þ
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ð/�
mÞn ¼ �ic/�

m ; ðA:4Þ
We proceed by defining
/m ¼ a~/; ðA:5Þ

which is then substituted into (A.2) to obtain
~/nn þ
c
a

aðc�1Þn þ
2

c
an

� �
~/n þ

c
a
ðc�1anÞn~/þ c2~/ ¼ 0: ðA:6Þ
Following Booij [1] and Radder [19], we neglect the derivative of a and reduce (A.6) to
~/nn þ
c
a

aðc�1Þn þ
2

c
an

� �
~/n þ c2~/ ¼ 0: ðA:7Þ
Now, we rewrite (26) as
~/nn þ ðg11p � U 2Þ�1ðg11p � U 2Þn~/n þ k21 1þ M þ S

k21ðg11p � U 2Þ

" #
~/ ¼ 0: ðA:8Þ
Comparison with (A.7) leads to the results
c ¼ k1 1þ M þ S

k21ðg11p � U 2Þ

" #1=2
; ðA:9Þ

a ¼ k1=21 ðg11p � U 2Þ1=2 1þ M þ S

k21ðg11p � U 2Þ

" #1=4
: ðA:10Þ
Substituting (A.9) and (A.10) into (A.3) results in the parabolic equation
o

on
k1=21 ðg11p � U 2Þ1=2 1þ M þ S

k21ðg11p � U 2Þ

" #1=4
~/
þ

8<
:

9=
;

¼ ik1k
1=2
1 ðg11p � U 2Þ1=2 1þ M þ S

k21ðg11p � U 2Þ

" #3=4
~/
þ
: ðA:11Þ
Approximating the operators in (A.11) using the first two terms of the binomial expansion gives the par-

abolic model equation (where the + superscript has been dropped)
o

on
k1=21 ðg11p � U 2Þ1=2 1þ M þ S

4k21ðg11p � U 2Þ

" #
~/

( )

¼ ik1k
1=2
1 ðg11p � U 2Þ1=2 1þ 3ðM þ SÞ

4k21ðg11p � U 2Þ

" #
~/: ðA:12Þ
Denote k1(g
11p � U2) = d. Then, (A.12) may be written as
o

on
ðd1=2~/Þ þ o

on
R

4k1d
1=2

~/

� �
¼ ik1d

1=2~/þ i
3R

4d1=2
~/: ðA:13Þ
Denote R~/ ¼ M 0~/þ N ~/þ S~/, where N ~/ are the localized non-linear and dissipation terms and S~/ is

expressed in (28). Then
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M 0~/ ¼ 2xk1U þ ix
1

J
½ðJUÞn þ ðJV Þg�

	 

~/� ðUV ~/gÞn � ðUV ~/nÞg þ ðg22p � V 2Þ~/g

h i
g

þ 2ixðU ~/n þ V ~/gÞ; ðA:14Þ

N ~/ ¼ �r2k21g
11DjAj2~/� ir

w
2
~/: ðA:15Þ
We will use a local phase and amplitude according to
~/ ¼ �ig
A0

r

� �
eiw; w ¼

Z
k1 n; gð Þ dn� xt; ðA:16Þ
so that
o~/
on

¼ �ig
A0

r

� �
n

þ ik1
A0

r

� �" #
eiw ’ ik1~/ at lowest� order: ðA:17Þ
After dropping some small terms such as ok1
on =k

2
1N ~/ and ok1

on =k
2
1S~/ and using lowest-order
N ~/n ¼ ik1N ~/; ðA:18Þ

S~/n ¼ ik1S~/: ðA:19Þ
Eq. (A.13) may be written as
d
o~/
on

þ 1

2

od
on

~/� ik1d~/� i

2
ðN þ SÞ~/þ 1

4k1
ðM ~/Þn �

3i

4
ðM ~/Þ � 1

4
bðM ~/Þ ¼ 0; ðA:20Þ
where b is given by (31). Notice that
d ¼ k1ðg11p � U 2Þ ¼ rð
ffiffiffiffiffiffi
g11

p
Cg þ UÞ � xU : ðA:21Þ
Eq. (A.20) can be rewritten as (30) using (A.21).
Appendix B. Model equation from cartesian parabolic approximation [8]

Starting with the time-dependent wave–current equation (1), Kirby [8] derived the following higher-
order parabolic equation in the Cartesian coordinate system (x,y), assuming that waves propagate domi-

nantly in the x-direction.
ðCg þ uÞAx þ vAy þ ið�k � kÞðCg þ uÞAþ r
2

Cg þ u
r

� �
x

þ v
r

� �
y

� �
A� i

2
ðp � v2Þ A

r

� �
y

" #
y

þ i

2
uv

A
r

� �
y

" #
x

þ uv
A
r

� �
x

� �
y

( )
þ ir

2
k2DjAj2Aþ w

2
Aþ 1

4k
ðp � v2Þ A

r

� �
y

" #
yx

þ 2i rv
A
r

� �
y

" #
x

8<
:

9=
;

þ b
4

2ixu
A
r

� �
x

þ 2irv
A
r

� �
y

� 2uv
A
r

� �
xy

þ ðp � v2Þ A
r

� �
y

" #
y

8<
:

9=
;

þ i

4k
½ðxvÞy þ 3ðxuÞx�

A
r

� �
x

þ S0 ¼ 0: ðB:1Þ
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